10813 measured reflections

 $R_{\rm int} = 0.016$

3855 independent reflections

3272 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(4-carboxypiperidinium) 5-nitroisophthalate

Na Li

College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China

Correspondence e-mail: luckyms@126.com

Received 14 May 2010; accepted 14 May 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.101; data-to-parameter ratio = 12.9.

Cocrystallization of 4-carboxypiperdine with 5-nitroisophthalic acid afforded the title salt, $2C_6H_{12N}O_2^+$. $C_8H_3NO_6^{2-}$, in which the heterocyclic N atoms are protonated and the carboxylic acid groups are deprotonated. In the crystal, intermolecular N-H···O and O-H···O hydrogenbonding interactions assemble the ions into a three-dimensional network.

Related literature

For molecular self-assembly by non-covalent interactions and its potential applications, see: Remenar *et al.* (2003); Oxtoby *et al.* (2005); Zaworotko (2001); Wang *et al.* (2009). For 4piperdinecarboxylic acid as a zwitterion in aqueous solution, see: Mora *et al.* (2002) and for its ability to act selectively as a bridging or terminal ligand, see: Inomata *et al.* (2002). For related structures, see: Adams *et al.* (2006); Podesta & Orpen (2002); Delgado *et al.* (2001); Zhang *et al.* (2009).

Experimental

Crystal data

 $\begin{array}{l} 2\text{C}_{6}\text{H}_{12}\text{NO}_{2}^{+}\cdot\text{C}_{8}\text{H}_{3}\text{NO}_{6}^{2-}\\ M_{r}=469.45\\ \text{Monoclinic, } C2/c\\ a=23.6865 (12) \text{ Å}\\ b=8.2478 (4) \text{ Å}\\ c=22.5140 (11) \text{ Å}\\ \beta=92.396 (1)^{\circ} \end{array}$

V = 4394.5 (4) Å ³
Z = 8
Mo $K\alpha$ radiation
$\mu = 0.12 \text{ mm}^{-1}$
T = 296 K
$0.25 \times 0.24 \times 0.20 \ \mathrm{mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.972, T_{\rm max} = 0.977$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	300 parameters
$wR(F^2) = 0.101$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
3855 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O7-H7\cdots O2^{i}$	0.82	1.72	2.5204 (16)	166
O9−H9···O3 ⁱⁱ	0.82	1.75	2.5495 (17)	164
$N2-H2A\cdots O4^{iii}$	0.90	1.98	2.8629 (19)	166
$N2 - H2B \cdot \cdot \cdot O4^{iv}$	0.90	2.01	2.7823 (17)	143
$N3-H3A\cdotsO1^{v}$	0.90	1.83	2.7220 (18)	171
$N3-H3B\cdots O8^{vi}$	0.90	1.89	2.755 (2)	161

Data collection: *APEX2* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg & Berndt, 1999); software used to prepare material for publication: *SHELXL97*.

The author gratefully acknowledges the financial support of the Tianjin Key Laboratory of Structure and Performance for Functional Molecule.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5271).

References

- Adams, C. J., Crawford, P. C., Orpen, A. G. & Podesta, T. J. (2006). *Dalton Trans*. pp. 4078–4092.
- Brandenburg, K. & Berndt, M. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Delgado, G., Mora, A. J. & Bahsas, A. (2001). Acta Cryst. C57, 965-967.
- Inomata, Y., Ando, M. & Howell, F. S. (2002). J. Mol. Struct. 616, 201-212.
- Mora, A. J., Delgado, G., Ramírez, B. M., Rincón, L., Almeida, R., Cuervo, J. & Bahsas, A. (2002). J. Mol. Struct. 615, 201–208.
- Oxtoby, N. S., Blake, A. J., Champness, N. R. & Wilson, C. (2005). *Chem. Eur. J.* **11**, 1–13.
- Podesta, T. J. & Orpen, A. G. (2002). CrystEngComm, 4, 336-342.
- Remenar, J. F., Morissette, S. L., Peterson, M. L., Moulton, B., MacPhee, J. M.,
- Guzmán, H. R. & Almarsson, Ö. (2003). J. Am. Chem. Soc. **125**, 8456–8457. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.

Wang, L.-L., Chang, H. & Yang, E.-C. (2009). Acta Cryst. C65, 0492-0494.

Zhang, R.-W., Wang, L.-L. & Zhao, X.-J. (2009). Acta Cryst. E65, m664-m665.

Acta Cryst. (2010). E66, o1393 [doi:10.1107/S1600536810017927]

Bis(4-carboxypiperidinium) 5-nitroisophthalate

N. Li

Comment

Recently, molecular self-assembly by non-covalent interactions has attacted considerable interest in supramolecular chemistry and crystal engineering fields due to its potential applications in materials (Zaworotko, 2001), molecular recognition (Wang *et al.*, 2009; Oxtoby *et al.*, 2005), and pharmaceutical chemistry (Remenar *et al.*, 2003). Obviously, the conguated organic components with rich carboxylate or amino groups have became good blocks for the construction of self-assembly systems, since popular hydrogen-bonding and π ··· π interactions are the main driven forces of the assembly process. In this regard, bearing two functional groups (–NH– and –COOH–) capable of producing abundant hydrogen-bonding interactions as well as coordination with transitional ions, 4-piperdinecarboxylic acid (Hpipe) exists as a zwitterion with the amino group protonated and the carboxylic group deprotonated in aqueous solution (Mora *et al.*, 2002). While, in the solid state, the zwitterionic Hpipe can either coordinate with metal ions by its deprotonated carboxylate group or form cocrystals with other compensated components by hydrogen-bonding interactions (Inomata *et al.* 2002; Adams *et al.*, 2006; Podesta & Orpen, 2002; Zhang *et al.*, 2009; Delgado *et al.* 2001). To continue to investigate the self-assembly behavior of Hpipe in the solid state, herein, we report the cocrystal of Hpipe and 5-nitroisophthalic acid (H₂nip).

As shown in Figure 1, the asymmetric unit of (**I**) comprises one doubly deprotonated 5-nitro-isophthalate anion (nip^{2-}) and two chemically equal but crystallographically independent 4-piperdinecarboxylic acid cations (H_2pipe^+) . In the crystal, a pair of symmetry-related nip anions and two crystallographically equivalent Hpipe⁺ cations are connected together in a head-to-tail manner by N–H···O and O–H···O hydrogen-bonds between the protonated amino/carboxylic groups of H₂pipe⁺ and the deprotonated carboxylate of nip anions (Table 1). Thus, closed four-component-based supramolecular rings are gerenated and extended in [1 -1 1] direction (Figure 2). Then, these supramolecular rings are further non-covalently extended by pairs of the second crystallographically unique Hpipe⁺ cation, leading to a three-dimensional (3-D) hdrogen-bonds network (Figure 3 and Table 1). Thus, the abundant hydrogen-bonding interactions significantly dominate the formation of 3-D supramolecular network of the title cocrystal.

Experimental

4-Piperidinecarboxylic acid (0.1 mmol, 12.9 mg) and 5–nitroisophthalic acid (0.1 mmol, 21.0 mg) were dissolved in a mixed CH₃OH—H₂O solution (v : v = 5 : 2, 7.0 ml) and stirred constantly for about 30 min. The resulting mixture was then filtered. Colorless block-shaped crystals suitable for X–ray diffraction were collected by slow evaporation of the filtrate in one week. Yield: 65% based on 4-piperdinecarboxylic acid. Anal. calcd for $C_{20}H_{27}N_3O_{10}$: C, 51.17; H, 5.80; N, 8.95%. Found: C, 51.27; H, 5.91; N, 9.03%.

Refinement

H atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C - H = 0.93 (for methylene) or 0.97 (for aromatic C - H), O - H = 0.82, and N - H = 0.90 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O)].

Figures

Fig. 1. The asymmetric unit of the title complex. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Partial packing diagram of the title compound. H bonds drawn as dashed lines.

Bis(4-carboxypiperidinium) 5-nitroisophthalate

Crystal data

$2C_6H_{12}NO_2^+ \cdot C_8H_3NO_6^{2-}$	F(000) = 1984
$M_r = 469.45$	$D_{\rm x} = 1.419 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 23.6865 (12) Å	Cell parameters from 5783 reflections
b = 8.2478 (4) Å	$\theta = 2.6 - 27.7^{\circ}$
c = 22.5140 (11) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\beta = 92.396 (1)^{\circ}$	T = 296 K
$V = 4394.5 (4) Å^3$	Block, colourless
Z = 8	$0.25 \times 0.24 \times 0.20 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer	3855 independent reflections
Radiation source: fine-focus sealed tube	3272 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.016$
phi and ω scans	$\theta_{\text{max}} = 25.0^\circ, \ \theta_{\text{min}} = 1.7^\circ$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -26 \rightarrow 28$
$T_{\min} = 0.972, \ T_{\max} = 0.977$	$k = -6 \rightarrow 9$
10813 measured reflections	$l = -26 \rightarrow 25$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.101$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0446P)^{2} + 3.6101P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3855 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
300 parameters	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.05079 (5)	0.70916 (18)	-0.03056 (5)	0.0496 (3)
O2	0.08990 (5)	0.83618 (18)	-0.10541 (5)	0.0508 (3)
O3	0.16282 (6)	0.63183 (16)	0.15592 (5)	0.0497 (3)
O4	0.22886 (5)	0.81433 (15)	0.18158 (5)	0.0431 (3)
O5	0.31864 (6)	1.0750 (2)	0.00708 (7)	0.0634 (4)
O6	0.26236 (6)	1.1471 (2)	-0.06513 (7)	0.0702 (5)
O7	1.00128 (5)	0.77960 (18)	0.83217 (6)	0.0561 (4)
H7	1.0273	0.8104	0.8546	0.084*
O8	0.96201 (7)	1.0009 (2)	0.86340 (11)	0.1136 (9)
O9	0.89526 (5)	0.40628 (18)	0.75229 (5)	0.0520 (4)
Н9	0.8714	0.3961	0.7774	0.078*
O10	0.82217 (6)	0.3599 (3)	0.69185 (7)	0.0915 (7)
N1	0.27300 (6)	1.07054 (18)	-0.01985 (7)	0.0410 (3)
N2	0.78899 (5)	0.87733 (17)	0.76390 (6)	0.0333 (3)
H2A	0.7801	0.9650	0.7854	0.040*
H2B	0.7578	0.8468	0.7426	0.040*
N3	0.99531 (6)	0.26082 (18)	0.57233 (6)	0.0410 (3)
НЗА	1.0170	0.2687	0.5406	0.049*

H3B	1.0025	0.1645	0.5898	0.049*
C1	0.14080 (6)	0.83039 (19)	-0.01316 (7)	0.0310 (3)
C2	0.14657 (6)	0.77035 (19)	0.04446 (7)	0.0314 (3)
H2	0.1191	0.7006	0.0582	0.038*
C3	0.19210 (6)	0.81163 (19)	0.08202 (6)	0.0304 (3)
C4	0.23391 (6)	0.9130 (2)	0.06152 (7)	0.0324 (4)
H4	0.2646	0.9434	0.0861	0.039*
C5	0.22846 (6)	0.96748 (19)	0.00345 (7)	0.0314 (3)
C6	0.18275 (6)	0.92973 (19)	-0.03393 (7)	0.0326 (3)
H6	0.1801	0.9704	-0.0725	0.039*
C7	0.08946 (6)	0.7881 (2)	-0.05230 (7)	0.0350 (4)
C8	0.19502 (7)	0.7475 (2)	0.14504 (7)	0.0335 (4)
C9	0.90789 (6)	0.8298 (2)	0.79810 (8)	0.0386 (4)
H9A	0.9167	0.7345	0.7742	0.046*
C10	0.88790 (7)	0.9662 (2)	0.75661 (8)	0.0424 (4)
H10A	0.8819	1.0635	0.7797	0.051*
H10B	0.9170	0.9894	0.7288	0.051*
C11	0.83367 (7)	0.9221 (2)	0.72253 (8)	0.0426 (4)
H11A	0.8210	1.0135	0.6983	0.051*
H11B	0.8405	0.8317	0.6962	0.051*
C12	0.80657 (7)	0.7439 (2)	0.80488 (8)	0.0411 (4)
H12A	0.8121	0.6456	0.7822	0.049*
H12B	0.7769	0.7236	0.8323	0.049*
C13	0.86074 (7)	0.7858 (2)	0.83956 (8)	0.0422 (4)
H13A	0.8725	0.6940	0.8640	0.051*
H13B	0.8540	0.8766	0.8657	0.051*
C14	0.96009 (7)	0.8790 (2)	0.83435 (9)	0.0433 (4)
C15	0.91160 (7)	0.3924 (2)	0.64910 (7)	0.0358 (4)
H15	0.9051	0.4959	0.6286	0.043*
C16	0.89746 (7)	0.2580 (2)	0.60467 (7)	0.0405 (4)
H16A	0.9024	0.1536	0.6240	0.049*
H16B	0.8582	0.2674	0.5910	0.049*
C17	0.93479 (7)	0.2668 (2)	0.55192 (8)	0.0436 (4)
H17A	0.9264	0.1766	0.5253	0.052*
H17B	0.9273	0.3666	0.5302	0.052*
C18	1.01064 (7)	0.3933 (2)	0.61503 (8)	0.0448 (4)
H18A	1.0056	0.4974	0.5955	0.054*
H18B	1.0501	0.3830	0.6280	0.054*
C19	0.97391 (7)	0.3853 (2)	0.66851 (8)	0.0418 (4)
H19A	0.9830	0.4754	0.6949	0.050*
H19B	0.9815	0.2855	0.6901	0.050*
C20	0.87172 (7)	0.3847 (2)	0.69963 (8)	0.0406 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
01	0.0375 (7)	0.0741 (9)	0.0371 (7)	-0.0206 (6)	0.0007 (5)	-0.0047 (6)
O2	0.0380 (7)	0.0776 (10)	0.0356 (7)	-0.0124 (6)	-0.0110 (5)	0.0119 (6)

03	0.0657 (8)	0.0494 (8)	0.0343 (6)	-0.0115 (7)	0.0051 (6)	0.0055 (6)
04	0.0462 (7)	0.0512 (7)	0.0311 (6)	0.0052 (6)	-0.0100 (5)	0.0004 (5)
05	0.0413 (8)	0.0816 (11)	0.0667 (9)	-0.0263 (7)	-0.0037 (7)	-0.0034 (8)
06	0.0663 (10)	0.0886 (12)	0.0559 (9)	-0.0231 (8)	0.0044 (7)	0.0300 (8)
07	0.0410 (7)	0.0657 (9)	0.0596 (9)	0.0117 (7)	-0.0218 (6)	-0.0146 (7)
08	0.0655 (11)	0.0722 (12)	0.198 (2)	0.0142 (9)	-0.0592 (13)	-0.0777 (14)
09	0.0445 (7)	0.0722 (9)	0.0398 (7)	-0.0102 (7)	0.0066 (6)	-0.0009 (7)
O10	0.0310 (8)	0.191 (2)	0.0526 (9)	-0.0075 (10)	0.0066 (6)	-0.0059 (11)
N1	0.0385 (8)	0.0437 (8)	0.0414 (8)	-0.0086 (6)	0.0070 (6)	-0.0033 (7)
N2	0.0262 (6)	0.0404 (8)	0.0328 (7)	-0.0002 (6)	-0.0040 (5)	-0.0028 (6)
N3	0.0386 (8)	0.0470 (9)	0.0379 (8)	0.0116 (6)	0.0060 (6)	0.0081 (7)
C1	0.0268 (7)	0.0360 (9)	0.0301 (8)	0.0001 (6)	-0.0015 (6)	-0.0016 (7)
C2	0.0283 (8)	0.0356 (9)	0.0305 (8)	-0.0024 (6)	0.0026 (6)	-0.0003 (7)
C3	0.0302 (8)	0.0342 (8)	0.0268 (7)	0.0035 (6)	0.0008 (6)	-0.0020 (6)
C4	0.0278 (8)	0.0370 (9)	0.0320 (8)	0.0006 (6)	-0.0041 (6)	-0.0049 (7)
C5	0.0294 (8)	0.0321 (8)	0.0329 (8)	-0.0026 (6)	0.0024 (6)	-0.0015 (7)
C6	0.0325 (8)	0.0372 (9)	0.0278 (8)	0.0023 (7)	-0.0004 (6)	0.0022 (7)
C7	0.0298 (8)	0.0441 (10)	0.0308 (8)	-0.0005 (7)	-0.0018 (6)	-0.0029 (7)
C8	0.0350 (8)	0.0373 (9)	0.0282 (8)	0.0077 (7)	-0.0007 (7)	-0.0014 (7)
C9	0.0287 (8)	0.0333 (9)	0.0532 (10)	0.0005 (7)	-0.0052 (7)	-0.0104 (8)
C10	0.0339 (9)	0.0461 (10)	0.0475 (10)	-0.0069 (8)	0.0057 (7)	0.0022 (8)
C11	0.0378 (9)	0.0546 (11)	0.0353 (9)	-0.0019 (8)	0.0032 (7)	0.0060 (8)
C12	0.0329 (9)	0.0461 (10)	0.0438 (9)	-0.0079 (7)	-0.0041 (7)	0.0103 (8)
C13	0.0375 (9)	0.0449 (10)	0.0433 (10)	-0.0045 (8)	-0.0096 (7)	0.0089 (8)
C14	0.0325 (9)	0.0369 (10)	0.0597 (11)	-0.0035 (7)	-0.0073 (8)	-0.0068 (9)
C15	0.0326 (8)	0.0371 (9)	0.0380 (9)	0.0023 (7)	0.0030 (7)	0.0068 (7)
C16	0.0319 (9)	0.0490 (10)	0.0403 (9)	-0.0024 (7)	-0.0016 (7)	0.0028 (8)
C17	0.0399 (9)	0.0539 (11)	0.0366 (9)	0.0026 (8)	-0.0026 (7)	-0.0001 (8)
C18	0.0303 (9)	0.0591 (12)	0.0453 (10)	-0.0017 (8)	0.0031 (7)	0.0017 (9)
C19	0.0326 (9)	0.0549 (11)	0.0379 (9)	-0.0021 (8)	0.0011 (7)	-0.0015 (8)
C20	0.0329 (9)	0.0459 (10)	0.0431 (10)	0.0039 (7)	0.0035 (7)	0.0036 (8)

Geometric parameters (Å, °)

O1—C7	1.241 (2)	C5—C6	1.379 (2)
O2—C7	1.260 (2)	С6—Н6	0.9300
O3—C8	1.252 (2)	C9—C14	1.508 (2)
O4—C8	1.2524 (19)	C9—C10	1.525 (2)
O5—N1	1.2177 (19)	C9—C13	1.529 (2)
O6—N1	1.216 (2)	С9—Н9А	0.9800
O7—C14	1.277 (2)	C10—C11	1.513 (2)
О7—Н7	0.8200	C10—H10A	0.9700
O8—C14	1.199 (2)	C10—H10B	0.9700
O9—C20	1.301 (2)	C11—H11A	0.9700
О9—Н9	0.8200	C11—H11B	0.9700
O10—C20	1.197 (2)	C12—C13	1.514 (2)
N1—C5	1.469 (2)	C12—H12A	0.9700
N2—C12	1.485 (2)	C12—H12B	0.9700
N2—C11	1.485 (2)	C13—H13A	0.9700

N2—H2A	0.9000	C13—H13B	0.9700
N2—H2B	0.9000	C15—C20	1.510 (2)
N3—C17	1.488 (2)	C15—C16	1.521 (2)
N3—C18	1.490 (2)	C15—C19	1.523 (2)
N3—H3A	0.9000	C15—H15	0.9800
N3—H3B	0.9000	C16—C17	1.512 (2)
C1—C6	1.384 (2)	C16—H16A	0.9700
C1—C2	1.390 (2)	C16—H16B	0.9700
C1—C7	1.512 (2)	С17—Н17А	0.9700
C2—C3	1.385 (2)	С17—Н17В	0.9700
С2—Н2	0.9300	C18—C19	1.516 (2)
C3—C4	1.390 (2)	C18—H18A	0.9700
C3—C8	1.513 (2)	C18—H18B	0.9700
C4—C5	1.383 (2)	C19—H19A	0.9700
C4—H4	0.9300	С19—Н19В	0.9700
С14—О7—Н7	109.5	N2—C11—H11A	109.5
С20—О9—Н9	109.5	C10-C11-H11A	109.5
O6—N1—O5	123.39 (15)	N2—C11—H11B	109.5
O6—N1—C5	118.22 (14)	C10-C11-H11B	109.5
O5—N1—C5	118.38 (15)	H11A—C11—H11B	108.1
C12—N2—C11	112.66 (13)	N2—C12—C13	111.15 (14)
C12—N2—H2A	109.1	N2—C12—H12A	109.4
C11—N2—H2A	109.1	C13—C12—H12A	109.4
C12—N2—H2B	109.1	N2-C12-H12B	109.4
C11—N2—H2B	109.1	C13—C12—H12B	109.4
H2A—N2—H2B	107.8	H12A—C12—H12B	108.0
C17—N3—C18	112.38 (13)	C12—C13—C9	111.37 (14)
C17—N3—H3A	109.1	С12—С13—Н13А	109.4
C18—N3—H3A	109.1	С9—С13—Н1ЗА	109.4
C17—N3—H3B	109.1	C12—C13—H13B	109.4
C18—N3—H3B	109.1	С9—С13—Н13В	109.4
H3A—N3—H3B	107.9	H13A—C13—H13B	108.0
C6—C1—C2	118.83 (14)	O8—C14—O7	123.21 (17)
C6—C1—C7	120.71 (14)	O8—C14—C9	122.15 (17)
C2—C1—C7	120.46 (14)	O7—C14—C9	114.63 (15)
C3—C2—C1	121.73 (14)	C20-C15-C16	109.74 (14)
С3—С2—Н2	119.1	C20-C15-C19	114.31 (14)
C1—C2—H2	119.1	C16—C15—C19	110.20 (14)
C2—C3—C4	119.53 (14)	С20—С15—Н15	107.4
C2—C3—C8	119.36 (14)	C16—C15—H15	107.4
C4—C3—C8	121.11 (14)	C19—C15—H15	107.4
C5—C4—C3	118.01 (14)	C17—C16—C15	111.22 (14)
C5—C4—H4	121.0	C17—C16—H16A	109.4
C3—C4—H4	121.0	C15—C16—H16A	109.4
C6—C5—C4	122.91 (14)	C17—C16—H16B	109.4
C6—C5—N1	118.04 (14)	C15—C16—H16B	109.4
C4—C5—N1	119.05 (14)	H16A—C16—H16B	108.0
C5—C6—C1	118.94 (14)	N3—C17—C16	110.08 (14)
С5—С6—Н6	120.5	N3—C17—H17A	109.6

C9-C10-H10B	109.3	O10-C20-C15	122.50 (16)
H10A—C10—H10B	108.0	O9—C20—C15	115.03 (14)
N2-C11-C10	110.73 (14)		
C6—C1—C2—C3	2.2 (2)	C14—C9—C10—C11	-176.73 (15)
C7—C1—C2—C3	-177.66 (14)	C13—C9—C10—C11	-55.51 (19)
C1—C2—C3—C4	-1.3 (2)	C12—N2—C11—C10	-55.94 (19)
C1—C2—C3—C8	177.74 (14)	C9—C10—C11—N2	56.0 (2)
C2—C3—C4—C5	-0.8 (2)	C11—N2—C12—C13	55.84 (19)
C8—C3—C4—C5	-179.84 (14)	N2—C12—C13—C9	-55.4 (2)
C_{3} — C_{4} — C_{5} — C_{6}	2.1 (2)	C14—C9—C13—C12	177.09 (15)
C3-C4-C5-NI	-1/8.06(14)	C10 - C9 - C13 - C12	55.02 (19)
06—N1—C5—C6	10.3(2) -162 70(16)	C10 - C9 - C14 - 08	53.3(3)
05-N1-C5-C4	-163.70(10) -163.54(17)	C13 - C9 - C14 - 08	-07.8(3) -127.69(18)
00 = N1 = C3 = C4 05 = N1 = C5 = C4	-105.34(17) 16.5(2)	C10 = C9 = C14 = 07 C13 = C9 = C14 = 07	-127.09(18)
C4-C5-C6-C1	-13(2)	$C_{13} = C_{14} = C_{14}$	177 29 (14)
N1-C5-C6-C1	178.86 (14)	C19-C15-C16-C17	-55.98 (19)
C2-C1-C6-C5	-0.8(2)	C18—N3—C17—C16	-57.40 (19)
C7—C1—C6—C5	178.99 (14)	C15—C16—C17—N3	56.3 (2)
C6—C1—C7—O1	-174.49 (16)	C17—N3—C18—C19	57.68 (19)
C2—C1—C7—O1	5.3 (2)	N3-C18-C19-C15	-56.3 (2)
C6—C1—C7—O2	6.0 (2)	C20-C15-C19-C18	179.86 (15)
C2—C1—C7—O2	-174.16 (15)	C16-C15-C19-C18	55.7 (2)
C2—C3—C8—O3	15.5 (2)	C16-C15-C20-O10	-42.0 (3)
C4—C3—C8—O3	-165.40 (15)	C19—C15—C20—O10	-166.3 (2)
		G16 G15 G20 O0	
C2—C3—C8—O4	-164.12 (15)	C16-C15-C20-09	137.65 (16)

O9—H9…O3 ⁱⁱ	0.82	1.75	2.5495 (17)	164.
N2—H2A····O4 ⁱⁱⁱ	0.90	1.98	2.8629 (19)	166.
N2—H2B···O4 ^{iv}	0.90	2.01	2.7823 (17)	143.
N3—H3A···O1 ^v	0.90	1.83	2.7220 (18)	171.
N3—H3B···O8 ^{vi}	0.90	1.89	2.755 (2)	161.

Symmetry codes: (i) *x*+1, *y*, *z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+2, -*z*+1; (iv) *x*+1/2, -*y*+3/2, *z*+1/2; (v) *x*+1, -*y*+1, *z*+1/2; (vi) -*x*+2, *y*-1, -*z*+3/2.

Fig. 1

